316 research outputs found

    Well-posed infinite horizon variational problems on a compact manifold

    Full text link
    We give an effective sufficient condition for a variational problem with infinite horizon on a compact Riemannian manifold M to admit a smooth optimal synthesis, i. e. a smooth dynamical system on M whose positive semi-trajectories are solutions to the problem. To realize the synthesis we construct a well-projected to M invariant Lagrange submanifold of the extremals' flow in the cotangent bundle T*M. The construction uses the curvature of the flow in the cotangent bundle and some ideas of hyperbolic dynamics

    Rolling balls and Octonions

    Full text link
    In this semi-expository paper we disclose hidden symmetries of a classical nonholonomic kinematic model and try to explain geometric meaning of basic invariants of vector distributions

    Invariant Lagrange submanifolds of dissipative systems

    Full text link
    We study solutions of modified Hamilton-Jacobi equations H(du/dq,q) + cu(q) = 0, q \in M, on a compact manifold M

    Nonholonomic tangent spaces: intrinsic construction and rigid dimensions

    Get PDF
    A nonholonomic space is a smooth manifold equipped with a bracket generating family of vector fields. Its infinitesimal version is a homogeneous space of a nilpotent Lie group endowed with a dilation which measures the anisotropy of the space. We give an intrinsic construction of these infinitesimal objects and classify all rigid (i.e. not deformable) cases

    On the Hausdorff volume in sub-Riemannian geometry

    Full text link
    For a regular sub-Riemannian manifold we study the Radon-Nikodym derivative of the spherical Hausdorff measure with respect to a smooth volume. We prove that this is the volume of the unit ball in the nilpotent approximation and it is always a continuous function. We then prove that up to dimension 4 it is smooth, while starting from dimension 5, in corank 1 case, it is C^3 (and C^4 on every smooth curve) but in general not C^5. These results answer to a question addressed by Montgomery about the relation between two intrinsic volumes that can be defined in a sub-Riemannian manifold, namely the Popp and the Hausdorff volume. If the nilpotent approximation depends on the point (that may happen starting from dimension 5), then they are not proportional, in general.Comment: Accepted on Calculus and Variations and PD
    corecore